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Abstract— The paper studies the design of the neutral elastic inclusions that do not disturb the
prescribed uniform stress field in the surrounding elastic body. Such neutral inclusion does not
exist if a perfectly bonded interface between inclusion and elastic body is assumed. The design
method presented here is based on the model of imperfect interface characterized by the interface
parameters.

The basic equations for interface design of a single neutral elastic inclusion in plane and anti-
plane deformations are given and the corresponding interface parameters are discussed for several
typical inclusion shapes. In particular, the design of a neutral inclusion under uniaxial or equal-
biaxial tension is studied with a restriction imposed on the interface parameters that facilitates
implementation of the designed interface. The results obtained in the paper affirm the feasibility of
designing a neutral elastic inclusion in many typical cases by means of the imperfect interface.
© 1997 Elsevier Science Ltd

1. INTRODUCTION

It is commonly believed that a hole made in an elastic body will inevitably disturb the
original stress field and often lead to a stress concentration. Mansfield (1953) is one of the
first who recognized the feasibility of designing a reinforced “‘neutral” hole which does not
alter the original stress distribution in the cut elastic body. For related works, see e.g. Savin
(1961), Cherepanov (1974), Bjorkman and Richards (1976, 1979), Richards and Bjorkman
(1982), Wheerler (1992), Budiansky e? al. (1993) and Senocak and Waas (1993, 1995, 1996).

The analogous problem of a neutral elastic inclusion, which does not cause any stress
disturbance in the surrounding elastic body, has not received deserved attention despite its
importance for various problems in the design of composite materials and structures. This
can be attributed to, to some extent, the non-existence of such neutral elastic inclusion
when a conventional perfectly bonded interface between inclusion and elastic body is
presumed (it will be shown below). The design method proposed here is based on the model
of imperfect interface across which tractions are continuous and jumps in displacement are
proportional to their respective traction components in terms of the interface parameters.
This model has originally been proposed to describe the imperfectly bonded interfaces
appearing in various composite materials and structures, see, for example, Benveniste
(1984), Achenbach and Zhu (1989, 1990), Hashin (1990, 1991), Pagano and Tandon (1990),
Thorpe and Jasiuk (1992) and Jun and Jasiuk (1993). The present paper will make its
profitable application to the design of neutral elastic inclusions.

Consider a homogeneous elastic body, finite or infinite in extent and simply or multiply
connected, undergoing a uniform stress state under the prescribed loading system. Assume
that the elastic body is now cut out over a number of simply connected sub-domains and
filled up with some homogeneous elastic inclusions. The problem raised in the paper is
how to design the interfaces between inclusions and elastic body such that the embedded
inclusions are “neutral” in the sense that they do not disturb the original uniform stress
field in the cut elastic body. In other words, the concept of a neutral inclusion defined here
emphasizes the undisturbed stress state outside the inclusion (as will be seen below, it implies
the uniformity of stress state inside the inclusion for the present problems). This is obviously
different from the “equal-strain inclusion™ in the sense of Eshelby (Eshelby (1957)), which
usually destroys the uniformity of stress field outside the inclusion and then is not “neutral”
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Surrounding elastic body D,

> .Imperfect
interface I

Neutral elastic inclusion D,

Fig. 1. The design of a neutral elastic inclusion embedded in an elastic body in order that the
resulting composite is elastically equivalent to a homogeneous body under the prescribed uniform
stress field.

(see Eshelby (1959), Sendeckji (1970) and Ru and Schiavone (1996)). It is believed that the
concept of neutral elastic inclusion will find its applications in many practical problems
where the stress concentration caused by material mismatch is a matter of utmost concern.

Since this problem for multiple inclusions reduces to the single inclusion problems for
each of the embedded inclusions, the paper focuses on the design of a single neutral elastic
inclusion. Throughout the text, z = x+iy = re” denotes the complex coordinate, and D,
and D, represent the domains occupied by the elastic inclusion and the cut elastic body,
respectively. The interface between D, and D, is denoted by I, see Fig. 1. The subscripts 1
and 2 will refer to the domains D, and D,, respectively.

2. ANTI-PLANE SHEAR

First, we consider the neutral elastic inclusion in anti-plane shear. The anti-plane
displacement w(z) satisfies the harmonic equilibrium equation, and the interface conditions
along I" are given by

ow, ow,

h(z)(w) —w,) ':“1'5N= ﬂzﬁ (1)

where u is the shear modulus, N denotes the direction of the outward normal to T, and A(z)
is an interface parameter. In particular, A(z) = 0 represents the traction-free boundary, and
h(z) = infinity corresponds to a perfectly bonded interface. The interface model (1) can be
realized in practice by the adhesive layer which bonds the inclusion to the elastic body (for
example, an elastic interphase layer, see Hashin (1991), or continuously distributed linear
springs, see Gecit and Erdogan (1978) and Achenbach and Zhu (1989, 1990)). In doing so,
h(z) should be inversely proportional to the thickness, or directly proportional to the density
of the adhesive layer, then it can be designed arbitrarily by controlling the latter. The only
restriction is that 4(z) must be non-negative everywhere.

For convenience, we introduce the analytic functions y,(z) and y»(z), whose real parts
give pywi(z) and p,w,(2), in D, and D,, respectively. Hence, (1) can be written in a complex
form

H

Sy O™+ e ™) @

%1 (2) = 8x2(2) + (6 — Dy (2) +

where ¢@ denotes (in complex form) the outward unit normal to T, and
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M1+ Uy

§ =
2p,

3

Let the prescribed uniform stress field be characterized by y,(z) = Cz, where C is a given
complex number. According to the definition of a neutral inclusion, the original uniform
stress field in the cut elastic body remains undisturbed when the neutral inclusion is inserted,
then we have y%,(z) = Cz in D,. Hence, for a neutral inclusion, (2) is reduced to

e

Cz = 5y2(2) +(6— Dx2(2) + 2h(z)

[Ce™@ + Ce= V) )

whose imaginary part gives
Cz—Cz = ¥5(2) = 12(2)- (%)
This condition (5) determines uniquely ¥,(z) to within an arbitrary real number C,
X2(2) = Cz+ C,. (6)
Substituting (6) into the interface condition (4) yields

M

(1—8)(Cz+4Cz) = (26— 1)Co + )

[Ce™ + Ce= NI, (7)

This equation relates the interface parameter A(z) to the shape of neutral elastic inclusion.
For existence of the neutral inclusion, arbitrary real number C, should be properly chosen
to eliminate the possible rigid body translation (caused by the choice of the coordinates)
between the inclusion and elastic body. In particular, if the inclusion has two mutually
orthogonal axes of symmetry, we choose them as the coordinate axes, and then C, = 0.

The eqn (7) can not hold for any interface curve if A(z) is infinite everywhere. This
means that there is no neutral elastic inclusion if a conventional perfectly bonded interface
is presumed. This result suggests that the concept of imperfect interface plays an indis-
pensable role in the design of neutral elastic inclusions.

2.1. Determination of the inclusion shape when h(z) is given

First, we apply (7) to the determination of the neutral inclusion shape when the
variation of /(z) along the interface is prescribed.

Homogeneous interface (h(z) is a constant). We choose the coordinates such that C is
a real number. Due to the symmetries of the problem, the inclusion can be assumed to be
symmetric about the rectangular axes and then Cy, = 0. The eqn (7) has now the form

2h(1 -0
cos [N(z)] = A =9% ®)
Hy
It turns out that the neutral inclusion is a circle with the radius R given by
B s _ BT
2Rh_l 6———2#2 . 9

This result is independent of the prescribed uniform stress field. Hence, if the interface is
restricted to be homogeneous, the neutral elastic inclusion exists only when it is “harder”
than the surrounding elastic body (namely, u, > p;). In such a case, the only neutral
inclusion is a circle with the radius R given by (9). For example, for a neutral rigid inclusion,
(9) reduces to: u, = Rh. Hence, a rigid circular inclusion with the interface parameter A
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given by this formula will not disturb any uniform stress field in the surrounding elastic
body.

C is a real number and h(z) = h(x). It is the case when the unknown inclusion has two
mutually orthogonal axes of symmetry, one of which is parallel to the direction of the
prescribed uniform shear stress and A(z) depends on the distance from z to the other. In
this case, the coordinates can be chosen such that the inclusion is symmetric about the
rectangular axes, then C, = 0. If we denote the unknown curve I' by y = y(x), the eqn (7)
gives

1Y) 2h)(1-d)x
ST @OP Moo

It determines the shape of neutral inclusion when A(x) is given. For example, if A(x} is
inversely proportional to the absolute value of x, the neutral inclusion is a rhombus
symmetric about the coordinate axes.

(10)

2.2. Interface parameter h(z) of a neutral inclusion of given shape

Next, we derive the interface parameter h(z) of a neutral elastic inclusion when its
shape is given. Here, we are only interested in the inclusion shape which is symmetric about
two mutually orthogonal axes. Choose these axes of symmetry as the coordinate axes, then
C, = 0. Furthermore, let

N A

_ 8,
C_ww< :

I
290 > __)a

eqn (7) gives

P cos [N(0) +6,]
(4"20—&m%w+%y

(11)

It is assumed that 1 > d(p, > u,).

Elliptic inclusion. If the elliptic inclusion (as shown in Fig. 2(b)) does not degenerate
to a circular one, N(#) = 0 only at the four points of symmetry on I'. Consequently, from
(11), h(z) 1s non-negative on I when and only when C is a real or a pure imaginary number,
Hence, the design of an elliptic neutral inclusion is available, with the present method, only
when the prescribed uniform shear stress is parallel to one of its two principle axes. Note
that for an elliptic curve shown in Fig. 2(b)

a a®

N = : (12)

Then, if C is a positive real number, the associated parameter 4(z) is given by

H
a1 1
2a(1 —5)\/I+ b_2<b_2 — ;;)yz

Similar results can be drawn for an arbitrary smooth convex inclusion with two mutually
orthogonal axes of symmetry. Hence, the present design method is applicable for a wide
class of neutral elastic inclusion in anti-plane shear.

h(z) =

(13)
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(a) Circular inclusion
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Fig. 2. Several typical inclusion shapes (a) circular inclusion; (b) elliptic inclusion ; (c) rectangular
inclusion.

Rectangular inclusion. According to the above analysis, if the prescribed uniform shear
stress is parallel to one of the four edges, #(z) given by (11) is non-negative for a rectangular
neutral inclusion, shown in Fig. 2(c). On the other hand, if it is not the case (that is, if 8, is
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not equal to 0 or x/2), cos[N(8)+ 0,] is constant on each of the four edges and changes in
sign only at the corners P, and P, (if 6, > 0), or at P, and P, (if 8, < 0). Hence, in order
that 4(z) is non-negative on I, cos[0+ 0] is required to change its sign at the same corners
as cos [N(8) + 6,] does. This leads to

PP
arctanM +16,| =

P\ P, (14)

T
2
which guarantees the positivity of 4(z). For example, for a square inclusion, A(z) is positive
if the prescribed uniform shear stress is parallel to one of its two diagonals.

The results obtained in this section indicate that the model (1) of imperfect interface
can be used effectively in the design of a wide class of neutral elastic inclusions undergoing
anti-plane shear. In practice, an arbitrary adhesive layer (such as an elastic interphase layer
or a layer of distributed joints) can serve as such an imperfect interface. In this way, the
required interface parameter 4(z) can be accomplished (at least approximately) by adjusting
the thickness of adhesive layer or the density of distributed joints (see Gecit and Erdogan
(1978) and Hashin (1991)). In particular, interface design derived by the present method is
independent on the magnitude of the prescribed uniform stress field.

3. PLANE DEFORMATIONS

Now, we consider the neutral elastic inclusion in plane deformations. It is well-known
that the stresses and displacements can be given in terms of two analytic functions ¢(z) and
¥ (z) (see Muskhelishvili (1965))

2u(u +iu,) = [k¢(2) —2¢'(2) — Y ()] (15)
Gt 0, =200’ @+ @), on—ioy, =@+ (D) -[2¢"@+¢' ().  (16)

Here, k = 3—4v for plane strain and k = (3—v)/(1+v) for plane stress, and v is Poisson’s
ratio. Consequently, the boundary tractions and displacements are given by

2u(u, +iu) = e~ MOk (z) —z¢'(2) — Y (2)] (17
O — 0, = ¢'(2)+ ¢ (2) — 2V [2¢"(2) + ¥/ (2)]. (18)

Across the interface T', the inclusion is assumed to be bonded to the cut elastic body by an
imperfect interface described in Section 1, in terms of the normal and tangential interface
parameters m(z) and n(z), as follows

[[ann - iam]] =0 (19)
Onn = m(2)[u,]l,  0n = n(2)[[u]] (20)

where [[*]] = (*),— (*), denotes the jump across I'. When m(z) = n(z) = 0, (19-20) rep-
resent the traction-free boundary conditions; and if m(z) = n(z) = infinity, (19-20) cor-
respond to a perfectly bonded interface. Similar to anti-plane shear, the interface model
(19-20) can be realized in practice using an adhesive layer. In doing so, any one of the two
interface parameters, m(z) and n(z), or a combination of them, can be specified at will by
controlling the thickness or the density of adhesive layer. However, if only a single adhesive
material is used, the ratio m(z)/n(z) is usually a material constant, independent of the
thickness of the adhesive layer. For example, the ratio m(z)/n(z) can be assumed to be unity
for a layer of distributed springs (see Achenbach and Zhu (1989, 1990)), or be a certain
constant larger than one for an elastic interphase layer (see Hashin (1991)). Hence, in order
that the designed interface can be easily implemented using a single adhesive material,
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interface design of a neutral inclusion should be carried out under the restriction that the
ratio m/n is a constant not less than one (or equivalently, the ratio (m—n)/(m+ n) is a non-
negative constant not larger than one). In Section 3.2, the uniaxial (and equal-biaxial)
tension in plane deformations will be studied in detail with such a restriction condition.

However, the above analysis does not imply that the interface with two independent
parameters m(z) and n(z) should be precluded. For instance, to design a neutral inclusion
of given shape (see Section 3.1), m(z) and r(z) must be designed independently. In this case,
more than one adhesive material is needed. For example, combining an elastic interphase
layer with a continuous distribution of joints (such as springs), an imperfect interface with
two independently varying parameters m(z) and n(z) can be actually constructed. In Section
3.1, we discuss the design of a neutral inclusion of given shape and reduce it to the problem
of designing an interface of two given independent parameters m(z) and n(z).

Now, to derive the counterpart of eqn (7) to plane deformations, let the prescribed
uniform stress field be characterized by

$1(2) = 4z, ¥,(2) = Bz (e2y)

where 4 and B are given real and complex numbers, respectively. For a neutral elastic
inclusion, the condition (19) gives

2424 Bz = ¢,(2) +2¢5(2) + ¥, (2). (22)

According to the uniqueness of the solution of traction boundary problem in plane elasticity,
(22) determines uniquely ¢,(z) and y,(z) in D, apart from the additional terms 4,z and B,,
representing a rigid-body displacement, then

$:(2) =(A+id)z, ¥(2) = Bz+B, (23)

where A, is an arbitrary real number and B, an arbitrary complex number. The remaining
interface condition (23) is now of the form

24— BN =

m(z) +n(z) {e”"(z’ (e, — 1)Az— Bz]

4

1

iN(z)

[(ka —1)Az— Bz —i(k, + l)AOZ—Bo]}

2

N m(z) —n(z) {e‘”"(z’

I [(x) —1)Az — Bz]

1

—iN(2)

[(xy —1)Az— Bz +i(k, + 1)Aoz—1?0]}. (24)

2

This equation governs the interface design of a neutral elastic inclusion in plane defor-
mations. For existence of the neutral inclusion, arbitrary real number 4, and complex
number B, should be properly chosen to eliminate the possible rigid body displacement
between the inclusion and elastic body. In particular, if the inclusion is geometrically
symmetric about two mutually orthogonal axes and the latter is chosen as the coordinate
axes, we have 4o = B, = 0.

If the interface is perfectly bonded and then both m(z) and n(z) are infinite, eqn (24)
reduces to



566 C.-Q.Ru

#L[(Kl —1)Az—~Bz] = %[(KZ —1)Az2—Bz—i(k;+1)44Z— By] 2%

which fails for any interface curve unless two materials comprising the inclusion and
elastic body, respectively, are identical. Hence, there is no neutral elastic inclusion when a
conventional perfect interface is assumed.

3.1. Interface parameters of a neutral inclusion of given shape

First, we apply (24) to derive the interface parameters m(z) and n(z) for a neutral
inclusion when its shape is given. Here, we are only interested in the inclusion which has
two mutually orthogonal axes of symmetry. Choose the axes of symmetry as the coordinate
axes, then 4, = By = 0. To obtain the expressions for m(z) and n(z), respectively, it is
convenient to write {(24) in the forms

4A _BeZiN(z) _EefﬂN(z)

m(z) = An[e™Pz+e~ 2] - A[Be™)z + Bze M) (26)
B 2iN(z)__B' ~2iN(z) R R i o —i
e e = Anfze~ ™M@ — 26N 4 A[BeNE) 7 — Bze— N (27
#(z)
where

1 1 Ki—1l  K,—1
/‘{, = = = - : 28
5 1 H U @)

It is noted that k = 2 when v = 1/4 for plane strain or when v = 1/3 for plane stress. Since
the Poisson’s ratio v lies between 1/4 and 1/3 for most of the practical materials, the two
bi-material constants defined by (28) can be assumed to have the same sign.

Circular inclusion. First we consider a circular neutral inclusion. Choose the coordinates
such that 4 and B are two real numbers. Thus, (26) and (27) give

=i (29)

2 nA—ABcos[20]
m(z)R~ 2A—Bcos[20]

(30)

Obviously, the ratio m/n is not a constant on I" unless 4 = 0 or B = 0. When B = 0 (equal-
biaxial tension), # is arbitrary (see (29)) and m is given by

s €)))

On the other hand, if 4 = 0 (pure shear), the circular neutral inclusion is available when
m = n and

= (32)

In order to avoid interpenetration of materials, the negative normal displacement jump
given by the solution is not allowed to exceed the thickness of interface layer, see Hashin
(1991). Finally, for the uniaxial tension along the x-axis (then 24 = — B > 0), n and m(z)
are given by (29) and
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Fig. 3. Interface design of a neutral elastic inclusion under uniaxial tension when the ratiom—n/m+n
is a given constant along the interface.

n
2 2 +Acos[26]

m(z)R 1+ cos[26] °

(33)

respectively. It is noted that m(z) may be negative on two arcs of I' which, if any, are
determined by the condition

g+/1cos [26] < 0.

This implies that, when (y—24) < 0, a perfectly circular neutral inclusion under uniaxial
tension is unavailable with the present method. (A similar circumstance was encountered
in the design of neutral holes, see Mansfield (1953), where the positivity of the section-area
or the modulus of reinforcement disqualifies some arcs of curve for the boundary of a
neutral hole.) Instead, as will be seen below, the two disqualified arcs, on which m(z) given
by (33) is negative, can be replaced by two straight lines parallel to the uniaxial tensile
stress (cf. Fig. 3).

Rectangular inclusion. For a rectangular neutral inclusion, as shown in Fig. 2(c), the
interface parameters m(z) and n(z) are obtained from (26-27) as

+28 +2(2A—B
—n(Z)z = Any+A[xB, +yB,], __(h“—l)

e Anx+A[Byy—xB] (34)

for two vertical edges (where the positive sign ““+ is taken on the left-hand side of (34)
for P,P, and the negative sign “ - is taken for P,P;), and

128, +2(2A+ By)
o Anx+A[yB, —xB,}], m@

= Any+ A[xB,+yB,] (35)

for two horizontal edges (where the positive sign ““+ " is taken on the left-hand side of (35)
for P, P, and the negative sign ““ —"’ is taken for P,P;), where B = B, +iB,. When B, = 0,
we have that » = 0 on the whole interface I" and 1 is constant on each of all four edges. In
particular, m is positive under equal-biaxial tension provided that # > 0. On the other hand,
when 4 = B, = 0, m = 0 on the whole interface I" and # is constant on each of all four
edges. In this case, » is positive when and only when A > 0. Hence, the design of neutral
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rectangular inclusion under typical loading conditions reduces to the problem of designing
an interface withm =0 orn=0.

Of particular interest is the uniaxial tension (along the x-axis, then 24 = — B, > 0,
B, = 0). Assuming that (n—24) # 0, it is found that m = n = 0 on the two edges parallel
to the uniaxial tensile stress and

8
n=0, —=(Qi+n)x (36)

on the other two edges (normal to the tensile force). Here, m given by (36) is positive when
and only when 24A+#n > 0. A consequence of these results is that any straight line parallel
to the uniaxial tensile stress is qualified as a part of the boundary of a neutral elastic
inclusion (see Fig. 3) if it is endowed with the null interface parameters m = n = 0. It can
be proved from (26, 27) that this is a characteristic property of the uniaxial tension. This
result is very useful in the design of neutral elastic inclusion under uniaxial tension (see
Section 3.2). In doing so, a narrow gap may be made along this straight-line interface such
that the possible negative normal displacement jump, caused by the Poisson contraction,
does not lead to interpenetration of materials.

Elliptic inclusion. Finally we consider an elliptic neutral inclusion under an arbitrary
bi-axial tension (then A and B are real numbers). In this case, (26-27) give

44—-2Bcos[2N(6)]
m(z)
2Bsin [2N(6)]
n(z)

= Arncos [N(6) — 6] — Bricos [N(0)+ 0]

= Arnsin [ — N(6)]+ Brisin [N(9) +0]. (37

In particular, for equal-biaxial tension, (37) and (12) give

2 2
<1 + a—)+ (1 - a—)cos [20]
8 b? b?
n=20, = rlr'2 . (38)

m(z) P & y2
a 1__(1__)_
b? b ) a?

Hence, m(z) is positive on I' if and only if # > 0. Next, for the uniaxial tension parallel to
the major axis (x-axis), we find

1+ cos [2N(0)] P i i
M- - FyTaa. [(r+22) cos’ (6] + (n—22) - sin® [0]
4 sin [2N(6)] _ r? [(n+ 22):—; —(n—2A4)]sin[flcos[0] (39)

n(z) (1 1\,
a 1+E(F—;)y

and, for the uniaxial tension along the minor axis (y-axis), we have



Interface design 569

1— cos[2N(8 r? at
4 2NO)] - (n—24) cos® [6] + (n+ 27) — sin? [6]
m(z) 2 /1 1 b?
Jo T )
¥ \p* &

JSnR2NO] r [(,, 20— (1 2/1)”—] sin[6]cos[6].  (40)
n(2) \/ 271 1 b
a [I+— (V — _))’2
b*\p* a°

Obviously, the positivity of interface parameters depends on the material and geometric
constants. The sufficient conditions for the positivity of n(z) given by (39) and (40) are

2447 > 0. (41)

On the other hand, for any one of (39) and (40), there are two symmetric arcs of I" on
which m(z), given by (39) or (40), is negative. As a result, the design of a perfect elliptic
neutral inclusion is unavailable with the present method. In order to achieve a closed
inclusion boundary, the two disqualified arcs should be replaced by two straight lines
parallel to the uniaxial tensile stress, respectively.

From the results obtained in this section, it is seen that the design of a neutral inclusion
of given shape often requires that the two interface parameters m(z) and n(z) can be
specified independently. In principle, such an interface can be constructed using two or
more different adhesive materials. Of course, the implementation of such a combined
adhesive interface is technically more complicated.

3.2. Interface design when the ratio (m —n)/(m+n) is a given constant

In this section we study the interface design of a neutral inclusion under the restriction
that the ratio (m—n)/(m+n) is a constant along the interface. This restriction guarantees
that the designed interface can be easily implemented using a single adhesive material.

Equal-biaxial tension. From Section 3.1, the circular inclusion with a constant par-
ameter m, given by (31), can serve as a neutral inclusion under equal-biaxial tension. In
fact, the circular inclusion is the only neutral inclusion under equal-biaxial tension if the
ratio (m—n)/(m+n) is a constant on I'. To see this, note that the right-hand side of (24) is
real for equal-biaxial tension, then (24) gives

(1—w)(e™Pz—e D7) = (. (42)

It follows that the neutral inclusion must be a circle.

Uniaxial tension. Now we examine the uniaxial tension. In this case, the unknown
inclusion should be symmetric about two mutually orthogonal axes, one of which is parallel
to the uniaxial tensile stress. We choose the axes of symmetry as the coordinate axes such
that the x-axis is parallel to the uniaxial tensile stress. Thus, we have 24 = — B > ( and
Ay, = B, = 0. Hence, the following combination

2 4o~ NGO __ BaiNG)
m(z) +n(z)

is a real quantity. Then, it follows from (24) that
n—20(z—2)+w[e®™?2iz+n2) —e P 21z4n2)] = 0. 43)
If m(z) = n(z) (then w = 0) on I', the neutral inclusion exists only when 24 = 5. Hence, in

what follows, we assume that the ratio (m—n)/(m+n) is a non-zero constant w. In this
case, it is found from (43) that
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—i(g—24) sin [0] + /@7 | 2A® +ne P2 — (7 — 24)° sin? (6]
w22 +ne=?)

£2NE

(44)

with the condition
@? (A1) —[(2A—n)? +8w?nl] sin?[6] = 0. 45

The condition (45) guarantees that the right-hand side of (44) is a unit vector. It turns out
that (45) delimits two wedge-like regions bounded by two straight lines, intersecting at the
origin and symmetric about the coordinate axes, as shown in Fig. 3. Within the two wedge-
like regions, the arcs of boundary curve of the neutral inclusion can be constructed through
(44). Since these arcs can not form a closed curve, two straight lines, parallel to the uniaxial
tensile stress, can be added to complete the closed boundary curve of neutral inclusion, see
Fig. 3.

From (44), it is seen that N(Z) = — N(z). This implies that the curves described by (44)
are symmetric about the x-axis. Moreover, the right-hand side of (44) remains unchanged
when z is replaced by —z and, simultaneously, the square-root changes the sign. This
implies that two curves described by the right-hand side of (44), obtained by taking the
positive sign “+ " and the negative sign “ —"" for the square-root and located in the right
and the left half-planes, respectively, are symmetric with respect to the y-axis. Hence, as
expected, the shape of neutral inclusion described by (44) is symmetric about the two
coordinate axes. Thus, to examine the characters of the boundary curve, it is enough to
consider the first quadrant, in which (44) gives

(2A—n)*sin? [0] + (24+1) cos [6‘]\/(1)2 (2A+m)?—[(2A—n)* +8w?ni] sin’ [6]
w[(2A—1)? sin? [0] + (2A+1)? cos? [6]]

cos [2N(2)] =
(46)

and

sin [2N(2)] =

(A—n)(2A+n) sin [8] cos [0] — (22 —n) sin [0]\/ @ 23+ ) —[(2A—n)* +8w?nd] sin? [6]
w[(24—n)? sin® [6] + (2A+1n)? cos? [6]] '

(47)

It follows from (46) that cos [2N(z)] > 0. Furthermore, assuming that 24 —» > 0, then, in
view of the fact that

(1=®)RA—n) sin [0][(2A+1)? —8Axsin® [0]] > 0

we find from (47) that sin [2N(z)] > 0. These results imply that =/4 > N(z) > 0 when z is
located in the first quadrant.
In view of (44), eqn (24) is now reduced to

16 cos [N(z)]
(m(z2) +n(2))

= i\/w2|(212+n2)|2—-(n—2/1)2y2+(2/1+11)x (48)

33

where 4" takes the same sign as in (44). It is readily seen that the sum (m(z)+n(z))
determined by (48) is positive provided that 24+#n > 0. Once (m+#) is obtained, since the
ratio (m—n)/(m+n) is a known constant o, the interface parameters m(z) and n(z) can be
given by
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m(z) = HT“’(ern), n(z) = I_Tw(m+n). (49)

Obviously, m and r are non-negative if w*> < 1, and m is bigger than n if ® > 0.

In summary, when 24 4% > 0, the interface design of a neutral inclusion under uniaxial
tension can be implemented using a single adhesive layer. Once the adhesive material is
chosen, the ratio (m—n)/(m+n) is a known material constant (between zero and unity).
The shape of the neutral inclusion can be constructed based on the equations (44-47).
Next, the thickness of the adhesive layer can be determined in such a way that the cor-
responding sum (m(z) + »n(z)) satisfies eqn (48). It is noted that the shape of neutral inclusion
is determined by the material constants 4, # and w. In particular, the length-to-width ratio
of a neutral inclusion is bounded from below by the slope of two intersecting symmetric
straight lines given by (45), see Fig. 3.

Finally, the only cases in which the two wedge-like regions (see Fig. 3) spread over the
whole plane are: “n—24 = 0" and “w = 17, If = 24, it follows from (44) and (48) that

2me _ . BCOSING _
N =1, @) +nG) 2211 + w)x. (50

Hence, the neutral inclusion is a rectangle. On the other hand, when w = 1, eqns (44) and
(48) give

8cos [N(z2)]
T (m(2) +n(2))

2NG) _ |

e =(2A+n)x &)

and the neutral inclusion is also a rectangle. Therefore, in these limit cases, the shape of
neutral inclusion, described in Fig. 3, degenerates to a rectangle.

4. CONCLUSIONS

The model of imperfect interface is applied to the design of a single neutral elastic
inclusion in plane and anti-plane deformations. Among the other results, it is found that
the circular inclusion is the only neutral inclusion in each of the following cases: (1) the
inclusion with a homogeneous interface (k(z) is constant) in anti-plane shear, and (2) the
equal-biaxial tension in plane deformations and the interface parameters are restricted such
that the ratio (m—n)/(m+r) is a given constant along the interface. In addition, since the
interface with constant ratio [m(z) — n(z)]/[m(z) + n(z)] can be easily realized using a single
adhesive material, the design of a neutral elastic inclusion under uniaxial tension is studied
in detail with such a restriction condition. The results obtained affirm the feasibility of
designing a neutral elastic inclusion in many typical cases. In particular, the interface
designed by the present method is independent on the magnitude of the prescribed stress
field.

All interface parameters appearing in the paper are restricted to be non-negative. This
leads to the basic restriction condition for the existence of a neutral elastic inclusion with
the present method. This condition can be usually expressed in terms of the two bi-material
constants A and 5, defined by (28). Roughly speaking, it requires that the inclusion is
“harder” than the surrounding elastic body such that the deformation mismatch between
the inclusion and the elastic body is compatible with the prescribed uniform stress field.

Finally, it is stated that the design of a neutral elastic inclusion can also be achieved
using the method of eigen-strains. For example, for a circular inclusion with a perfectly
bonded interface in plane deformations, it can be proven that the constant eigen-strains
{e¥. ek e} given by
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gh+el, =nd, (e —e)—ief, +AB=0 (52)

make the circular inclusion neutral under the uniform stress field characterized by the
constants 4 and B. However, the design method based on the cigen-strains is ¢ssentially
dependent on the magnitude of prescribed stress field (this is readily seen from (52)). As a
result, the neutral inclusion designed by this method will cause non-uniform stress dis-
turbance both inside and outside the inclusion when the magnitude of the prescribed stress
field changes or reduces to zero. This undesirable property of the eigen-strain method
seriously limits its application to many practical cases.
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